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Abstract. An evolution equation of a curve is constructed by summing up the infinite sequence
of commuting vector fields of the integrable hierarchy for the localized induction equation (LIE).
It is shown to be equivalent to the Lund–Regge equation. The intrinsic equations governing the
curvature and torsion are deduced in the form of integrodifferential evolution equations. A class
of exact solutions which correspond to the permanent forms of a curve evolving by a steady
rigid motion are presented. The analysis of the solutions reveals that, given the shape, there are
two speeds of motion, one of which has no counterpart in the case of the LIE.

1. Introduction

The motion of vortex tubes in an inviscid incompressible fluid is described by the Biot–
Savart law. The localized induction equation (LIE) is the simplest model to capture the
leading-order behaviour of the three-dimensional self-induced motion of a vortex filament
[1, 2]. Hasimoto [3] showed that the LIE is equivalent to the cubic nonlinear Schrödinger
equation (NLS) for a complex variable, implying that the LIE is completely integrable.
By complete integrability, we mean that the evolution equation has an infinite sequence
of independent integrals in involution. Magri [4] unveiled the bi-Hamiltonian structure
that underlies this integrability and thereby manipulated a recursion operator to generate an
infinite sequence of integrals in involution and commuting Hamiltonian vector fields. Langer
and Perline [5] made an effort to lift the structure of the NLS to the LIE by taking advantage
of the Hasimoto map. They restricted the space of curves to a class called the balanced
asymptotically linear curves (BAL), and proved that the Hasimoto map is a Poisson map
with respect to the appropriate Poisson structure on the BAL. Relying on this connection,
they constructed a recursion operator to generate an infinite sequence of commuting vector
fields associated with the LIE. We call this sequence the Langer–Perline hierarchy (LPH).

Let X = X(s, t) be a point on the filament andV (n) = V (n)(s, t) the nth term of the
LPH with s andt being the arclength and the time, respectively. They are listed as follows:

V (1) = Xs × Xss (1.1)

V (2) = Xsss + 3
2Xss × (Xs × Xss) (1.2)
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...

V (n) = − Xs × V (n−1)
s + T (n)Xs (1.3)

...

where the subscripts denote the partial differentiation with respect to the indicated variables
andT (n) is a function to be determined by the condition of the arclength parametrization:
V (n)
s · Xs = 0. EquatingV (1) with Xt , the first equation gives the LIE with appropriately

rescaled time. Next, if we takeXt = V (1) + εV (2), ε some parameter, we recover the
localized induction equation of a vortex filament with axial flow in the core [6, 7]. Recall
that it is equivalent to the Hirota equation [8] which results from a summation of the first
two terms of the NLS hierarchy as it should be (see also [9] and [10]). With this observation,
it is tempting to pursue the summation procedure of vector fields of the LPH. Incidentally,
families of evolution equations that preserve local geometric invariants are produced by
combining finite terms of the LPH [11, 12].

The objective of the present investigation is to establish an evolution equation of a curve
by summing up all of the infinite vector fields of the LPH and to disclose its properties.

In section 2, the summation procedure is implemented. We demonstrate that the resulting
equation is equivalent to the Lund–Regge equation, which was derived as a model for the
motion of a relativistic string in a constant external field [13]. In section 3, we rewrite
our equation into the intrinsic form, that is, evolution equations for the curvature and the
torsion. They are reduced to the sine–Gordon equation if the filament takes a specific value
of torsion. In section 4, we seek exact solutions. By using the methods of Kida [14] and
Fukumoto [15, 16], the whole family of filaments which travel steadily with no deformation
are obtained. The behaviour of a soliton, a localized twist wave, is discussed in some detail.
Each shape admits two propagating speeds of a twist, one of which has no counterpart in
the LIE and is therefore peculiar to the infinite summation of the LPH. The similar is true
for the whole class. Section 5 is devoted to a summary and conclusions.

2. Summation of Langer–Perline hierarchy

Consider the evolution equation of a curve obtained by summing up all of the terms of the
LPH, namely

Xt = V (1) + εV (2) + ε2V (3) + · · · =
∞∑
n=1

εn−1V (n). (2.1)

Here the coefficient of each term is taken to be an integral power of some constantε. This
infinite summation is rather formal.

By virtue of the recursion relation (1.3), the resulting equation is expressed in a compact
form:

Xt = Xs × Xss − εXs × Xts + T Xs (2.2)

where

T = 1
2εXt · Xt + C(t) (2.3)

with C(t) being an arbitrary real function oft , and the conditionXs · Xs = 1 is to be kept
in view. The derivation of (2.3) is straightforward; we first differentiate both sides of (2.2)
with respect tos, and thereafter take the inner product withXs . Using (2.2) again, we have
Ts = εXst · Xt , from which (2.3) follows. The second term on the right-hand side of (2.2)
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appears to be a perturbation to the LIE. However, it predominates in the time evolution
in the sense that the first term is absorbed into the second one simply by the change of
a variables → s − t/ε. It deserves a mention that this structure is accommodated in the
equation derived by Moore and Saffman [17] for the motion of a vortex filament with the
effect of an axial flow in the core being taken into account. Notably, (2.2) and (2.3) assure
not only arclength preservation but also conservation of the writhing number for a closed
filament [18].

It is illuminating to rewrite (2.2) into an alternative form. By taking the exterior product
with Xs , (2.2) is converted into

Xs × Xt = −Xss + εXst . (2.4)

Introducing the new variables

ζ = s η = 2t/ε + s (2.5)

we arrive at

Xζ ζ − Xηη = −2

ε
Xζ × Xη. (2.6)

This equation, supplemented by two auxiliary conditions

X2
ζ + X2

η = 1 − εC(t) (2.7)

Xζ · Xη = 1
2εC(t) (2.8)

is none other than the Lund–Regge equation [13]. It was given birth to as a byproduct of
a unified theory of the Nambu string, a relativistic string, and the classical vortex filament.
Notice that (2.7) and (2.8) differ from the original ones. To gain our expressions, it suffices
to choose

x0 = 1

2
(ζ + η)+ 1

ε

∫ ε(ζ−η)/2 √
1 − 2εC(t) dt

instead ofx0 = η in equation (3.1) of [13]. Our equation meets the conditions (2.7) and
(2.8), which is proved with no difficulty in the following way:

X2
ζ + X2

η = X2
s − εXs · Xt + 1

2ε
2X2

t = 1 − εC(t) (2.9)

Xζ · Xη = 1
2εXt · (Xs − 1

2εXt ) = 1
2εC(t). (2.10)

Langer and Perline picked out a restricted class of curves, the BAL. Under this
restriction,C(t) disappears and the vector fieldsV (n) are commutative with each other.
It is worth noting that (2.6)–(2.8) are, in the case ofC = 0, equivalent to the Lund–Regge–
Pohlmeyer–Getmanov equations, a complexified sine–Gordon equation, which is solvable
by the inverse scattering method [13, 19]. Probably, the condition ofC = 0 is necessary
in order for our equation to be completely integrable. Moreover, only in this case, (2.2) is
reducible to the LIE, in its simplest form, in the limit ofε → 0. Hereafter, we assume that
C = 0.

3. Intrinsic equations

We deduce the intrinsic form of (2.2) or (2.4) along the line of Hasimoto’s procedure [3, 9].
Let us introduce the complex curvatureψ and a complex vectorN defined by

ψ = κ exp

[
i
∫ s

τ ds

]
N = (n+ ib) exp

[
i
∫ s

τ ds

]
(3.1)
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whereκ andτ are the curvature and the torsion, and{t,n, b} are the Frenet–Serret frame
of a curve. The Frenet–Serret formulae are then written as

ts = − 1
2(ψ

∗N + ψN ∗) Ns = −ψt. (3.2)

Here the asterisk indicates complex conjugate. Using the identitiesN · N ∗ = 2,
N · N = N · t = N ∗ · t = 0, the time derivatives oft andN can be generally expressed,
by making use of some real functionR and some complex functionγ , as

tt = − 1
2(γ

∗N + γN ∗) Nt = iRN + γ t. (3.3)

Differentiating (2.2) with respect tos, we get, after some algebra,

γ = −iψs + iεψt − ( 1
2εXt · Xt − εR)ψ. (3.4)

The integrability conditionNst = Nts (or tst = tts) requires

ψt = −γs + iRψ (3.5)

Rs = 1
2i(γψ∗ − γ ∗ψ). (3.6)

Plugging (3.4) into (3.6), we have

Rs = 1
2|ψ |2s − 1

2ε|ψ |2t . (3.7)

On the other hand, using the identityγ = −tt · N , (3.6) leads to

Rs = tt · κb = Xst · Xt (3.8)

the last equality coming from (2.2) and its spatial derivative. Equation (3.8) helps to simplify
(3.4). It turns out that we may ignore the integration constant inR, being an arbitrary real
function of t , because it can be absorbed into the phase factor ofψ without affecting the
curve dynamics. Substitution of (3.4) and (3.7) into (3.5) yields, with the help of (3.8),

ψt = iψss + 1
2i|ψ |2ψ − iε

(
ψst + 1

2
ψ

∫ s

|ψ |2t ds

)
. (3.9)

In keeping with the procedure of infinite summation (2.1), the same equation is reached via
use of the recursion operator associated with the NLS hierarchy [4, 5]. According to the
form of this operator for the BAL, the indefinite integral in (3.9) is replaced by a definite
integral:

1

2

( ∫ s

−∞
|ψ |2t ds −

∫ ∞

s

|ψ |2t ds

)
. (3.10)

Splitting (3.9) into the real and imaginary parts, we obtain

κt = −(2κsτ + κτs)+ ε

(
κtτ + κτt + κs

∫ s

τt ds

)
(3.11)∫ s

τt ds = κss

κ
− τ 2 + κ2

2
− ε

(
κst

κ
− τ

∫ s

τt ds +
∫ s

κκt ds

)
(3.12)

the later of which becomes, upon differentiating with respect tos,

τt =
(
κss

κ

)
s

− 2ττs + κκs − ε

[(
κst

κ

)
s

− τs

∫ s

τt ds − ττt + κκt

]
. (3.13)

In a special case, (3.11) and (3.12) are collapsed into the sine–Gordon equation. In
terms of the variableŝt = t and ŝ = s + t/ε, they read

κt̂ +
1

ε
κŝ = ε

(
κt̂ τ + κτt̂ + κŝ

∫ ŝ

τt̂ dŝ

)
(3.14)∫ ŝ

τt̂ dŝ + 1

ε
τ = −ε

(
κŝt̂

κ
− τ

∫ ŝ

τt̂ dŝ +
∫ ŝ

κκt̂ dŝ

)
. (3.15)
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The integral of torsion in the definition of (3.1) is an indefinite integral, and therefore a
constant is at our disposal. If we setτ = 1/ε, the first equation is identically satisfied with
a choice of the integration constant in such a way that

∫ ŝ
τt̂ dŝ = 1/ε2.

For definiteness, we restrict our attention to the BAL. Their curvature vanishes at infinity.
In view of (3.10), (3.15) becomes

κŝt̂

κ
+ 1

2

( ∫ ŝ

−∞
κκt̂ dŝ −

∫ ∞

ŝ

κκt̂ dŝ

)
= − 1

ε3
. (3.16)

Following Nakayamaet al [20], we define

θ =
∫ ŝ

−∞
κ dŝ (3.17)

and prescribe the temporal evolution ofκ as

κt̂ = − 1

ε3
sinθ. (3.18)

Substituting from (3.17) and (3.18) and noting from (3.18) that sinθ → 0 asŝ → ±∞, we
find that (3.16) holds true. The consistency of (3.17) with (3.18) gives rise to

θŝt̂ = − 1

ε3
sinθ. (3.19)

4. Filament moving without change of form

The LIE admits solutions which express invariant shapes of a vortex filament moving
steadily through a still fluid. This problem was successfully solved by Kida [14]. We make
an attempt to search for this sort of exact solutions of our model.

We employ Kida’s ansatz. Extending Hasimoto’s idea [21], he considered that such
a motion comprises three ingredients, namely, a translation with velocityV in a certain
direction, say thez-direction, a rotation about the same axis with angular velocity�, and a
slipping motion along itself with speedc0. The resulting equation takes on the form

Xt = −c0Xs +�ez × X + V ez (4.1)

whereez is the unit vector in thez-direction, andc0, �, V are all constants. The general
solution of (4.1) is written, in Cartesian coordinates(X, Y, Z), as

X + iY = r(ξ) exp[i(φ(ξ)+�t)] (4.2)

Z = z(ξ)+ V t (4.3)

where

ξ = s − c0t (4.4)

andr(ξ), φ(ξ) andz(ξ) are arbitrary functions ofξ . The determination of these functions
requires a knowledge of the dynamical equation for the filament. Substitution of (4.1) into
(2.2) yields

−c0Xξ +�ez × X + V ez = (1 + εc0)Xξ × Xξξ − ε�[ez − (X · ez)Xξ ] + T Xξ (4.5)

because of∂/∂s = ∂/∂ξ . Multiplying (4.5) vectorially byXξ , we are left with

(1 + εc0)Xξξ = −Xξ × [�ez × X + (V + ε�)ez]. (4.6)

If we look uponξ as the time and upon(1+εc0) asm/q, (4.6) is identifiable as the equation
governing the motion of a charged particle with massm and chargeq in the magnetic field
−�ez × X − (V + ε�)ez (cf Fukumoto [15, 16]).
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This observation allows us to appeal to the technique of classical mechanics. We
concentrate on the case of 1+ εc0 6= 0. The degenerate case of 1+ εc0 = 0 will be treated
in the appendix. The LagrangianL for (4.6) is

L = 1 + εc0

2
(ṙ2 + r2φ̇2 + ż2)− V + ε�

2
r2φ̇ + �

2
r2ż (4.7)

where a dot denotes the differentiation inξ , and the definitions (4.2) and (4.3) have been
used. Inspection says thatz andφ are both cyclic, and the first integrals are available at
once:

ż+ �̂

2
r2 = P (4.8)

r2φ̇ − V̂ + ε�̂

2
r2 = M (4.9)

whereP andM are integration constants, and

�̂ = �

1 + εc0
V̂ = V

1 + εc0
. (4.10)

The conservation of kinetic energy of the particle is embodied by the arclength
parametrization of the curve:

|Ẋ|2 = ṙ2 + r2φ̇2 + ż2 = 1. (4.11)

The constantsP andM are not independent. Taking the inner product of (4.5) withXξ

and recalling the expression (2.3) ofT with C = 0, we have

(1 + εc0)(�r
2φ̇ + V ż) = c0 + 1

2ε(c
2
0 + V 2)+ 1

2ε�
2r2. (4.12)

Substitution from (4.8) and (4.9) provides us with the constraint

�̂M + V̂ P = ĉ0 + 1
2ε(V̂

2 − ĉ0
2
) (4.13)

where

ĉ0 = c0

1 + εc0
. (4.14)

The set of equations to be solved are (4.8), (4.9) and (4.11). They have the same form,
except for the coefficients, as in the case ofε = 0, so Kida’s procedure is straightforwardly
applicable. In the following, we present a brief description of the outline of integration.

Inserting (4.8) and (4.9),φ andz are eliminated from (4.11) to give

ρ̇2 = f (ρ) (4.15)

where

ρ = r2 (4.16)

and

f (ρ) = −�̂2ρ3 + [4�̂P − (V̂ + ε�̂)2]ρ2 + 4[1 − P 2 −M(V̂ + ε�̂)]ρ − 4M2. (4.17)

Noting that f (0) 6 0, we see that the realizable solution is available only whenf (ρ)

has three real rootsρ1, ρ2, ρ3 such thatρ3 6 0 6 ρ2 6 ρ1. The solution ranges over
ρ2 6 ρ 6 ρ1.† The solution of (4.15) is then expressible, in terms of the Jacobian elliptic
function, as

r2 = ρ1 − (ρ1 − ρ2)sn2(ξ̂ |k) (4.18)

† The case of�̂ = 0 is separately treated in the same manner as in [14] and the solution is a uniform helix.
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where

ξ̂ = 1
2(ρ1 − ρ3)

1/2|�̂|ξ (4.19)

and the elliptic modulus is

k =
(
ρ1 − ρ2

ρ1 − ρ3

)1/2

. (4.20)

Upon substitution of (4.18), (4.8) and (4.9) are immediately integrated to give

z =
(
P − 1

2
�̂ρ3

)
ξ − �̂

|�̂| (ρ1 − ρ3)
1/2E(ξ̂ | k)+ z0 (4.21)

φ = 1

2
(V̂ + ε�̂)ξ + 2M

ρ1(ρ1 − ρ3)1/2|�̂|5
(
ξ̂ | ρ1 − ρ2

ρ1
, k

)
+ φ0 (4.22)

wherez0 andφ0 are integration constants, and

E(u | k) =
∫ u

0
dn2(u′ | k) du′ (4.23)

and

5(u | l, k) =
∫ u

0

du′

1 − l sn2(u′ | k) (4.24)

are the incomplete elliptic integrals of second and third kinds, respectively.
As is evident from (4.8), (4.9) and (4.11), the filament form depends upon the four

parameterŝ�, V̂ + ε�̂, P andM. Among them, three are relevant, since the roots of the
cubic equationf (ρ) determine the form. Kida’s catalogue cover the whole family, so we
skip the detail of classification of the shapes.

However, it is remarkable that even if these parameters are specified and thus the form
is fixed at some instant, say att = 0, (4.13) admits two solutions for̂c0,

ĉ0 = 1

ε
±

√
1

ε2
− 2

ε

(
�̂M + V̂ P

)
+ V̂ 2. (4.25)

One of them (the minus sign) recovers that of the LIE in the limit ofε → 0. The other
branch, which increases unboundedly asε is decreased, is acquired as the result of the
infinite summation of the LPH. To put it in another way, it is missing if the summation is
truncated at a finite order.

This situation is lucidly exemplified by the one-soliton solution. It occurs in the limit
of k → 1. In view of (4.20),ρ2 = ρ3 = 0 in this limit and (4.17) produces

M = 0 (4.26)

1 − P 2 −M(V̂ + ε�̂) = 0 (4.27)

and the non-negative root off (ρ) is

ρ1 = 4P

�̂
− (V̂ + ε�̂)2

�̂2
. (4.28)

The first two together giveP 2 = 1. Inspection shows that we may put

P = 1 �̂ > 0 (4.29)

without loss of generality. Thanks to (4.26) and (4.29), (4.13) is factorized to yield

ĉ0 = V̂
2

ε
− V̂ . (4.30)



8032 Y Fukumoto and M Miyajima

It is the second one that has no counterpart in the case of the LIE. We name the soliton
solution with ĉ0 = V̂ the slow soliton and that witĥc0 = 2/ε − V̂ the fast soliton. This is
because, for the latter,ĉ0 and thusc0 become infinity in the limit ofε → 0. It is reminiscent
of the sound waves in the incompressible limit.

To facilitate the comparison with Hasimoto’s expression [3], write

�̂ = τ 2
0 + ν2 V̂ + ε�̂ = 2τ0 (4.31)

using constantsτ0 andν. It follows from (4.28) thatρ1/2
1 = 2ν/(τ 2

0 + ν2). Taking the limit
of k → 1 in (4.18)–(4.24) and substituting them into (4.2) and (4.3), we get the one-soliton
solution in the form

X + iY = 2ν

τ 2
0 + ν2

sech[ν(s − c0t)] ei8. (4.32)

Here, for the slow soliton,

c0 = 2τ0 − ε(τ 2
0 + ν2)

(1 − ετ0)2 + ε2ν2
(4.33)

8 = τ0s + ν2 − τ 2
0 + ετ0(τ

2
0 + ν2)

(1 − ετ0)2 + ε2ν2
t + φ0 (4.34)

Z = s − 2ν

τ 2
0 + ν2

tanh[ν(s − c0t)] + z0 (4.35)

and for the fast one,

c0 = 2τ0 − ε(τ 2
0 + ν2)− 2/ε

(1 − ετ0)2 + ε2ν2
(4.36)

8 = τ0s + 1

ε

(1 − ετ0)[2τ0 − ε(τ 2
0 + ν2)]

(1 − ετ0)2 + ε2ν2
t + φ′

0 (4.37)

Z = s − 2ν

τ 2
0 + ν2

tanh[ν(s − c0t)] + 2

ε
t + z′

0 (4.38)

with φ0, z0, φ′
0 andz′

0 being arbitrary constants. It is informative to add that

� = ± τ 2
0 + ν2

(1 − ετ0)2 + ε2ν2
V = ± 2τ0 − ε(τ 2

0 + ν2)

(1 − ετ0)2 + ε2ν2
(4.39)

with the plus sign being chosen for the slow soliton and the minus sign for the fast one.
The soliton solution is a curve of constant torsion and the torsion in the above expression
agrees withτ0. The curvature is

κ = 2ν sech[ν(s − c0t)]. (4.40)

They fulfil (3.11) and (3.12). Note that a kink solution of (3.19) coincides with the slow
soliton (4.40) withτ0 = 1/ε andc0 specified by (4.33).

The slow soliton indeed reduces to the Hasimoto soliton if the perturbation is switched
off (ε = 0). The slipping speedc0 of (4.33) and the coefficient oft in (4.34) are obtainable
from those of the Hasimoto soliton simply by the replacementσ 2 7→ σ 2/(1 − εσ ) with
σ = τ0 + iν. Furthermore, (4.32)–(4.35) are reduced, up toO(ε), to a soliton on a vortex
filament with axial velocity [6, 7, 22]. By contrast, the fast soliton is not accessible by
perturbing the Hasimoto soliton.

The origin of the existence of the fast soliton is traced to the symmetry associated with
the Lund–Regge equation. The salient feature of (2.6)–(2.8) is that they are invariant if the
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parametersζ andη are interchanged. If(ζ, η) defined by (2.5) are used in place of(s, t),
both the slow and fast solitons are cast into the solutions of the Lund–Regge equation, being
equivalent to the one-soliton solution obtained by Symet al [23]. We can confirm that the
interchange ofζ andη converts the slow soliton into the fast one.

This situation carries over to the general solution (4.18)–(4.24) with the double-valued
ĉ0 given by (4.25). The minus sign corresponds to the slow mode and the plus sign to the
fast mode. Owing to the form of̂c0, the differences of� andV between the two modes
arise only in their signs, in the same way as (4.39). After some manipulations, we realize
that these facts are closely tied with the interchangeability ofζ andη.

5. Conclusions

In this paper, we have highlightened some aspects of the Langer–Perline hierarchy that
show up when the summation is extended to the infinite order. The recursion operator of
the LPH renders it feasible.

We have verified that the resulting equation is reducible to the Lund–Regge equation.
The application of Hasimoto’s scheme brings in an intrinsic equation for the complex
curvature in the form of an integrodifferential evolution equation. It has the same form
as the equation obtained when the nonlinear Schrödinger hierarchy is summed up to the
infinite order. Splitting it into the real and imaginary parts, we reach a generalization of
the Betchov–Da Rios equations. In a special case, they are simplified to the sine–Gordon
equation, being in accord with Lund and Regge’s observation [13].

Our model possesses exact solutions of the same type as Kida derived, namely, the
invariant forms of a filament steadily rotating and translating in the three-dimensional
space. The shape remains unaltered from Kida’s solution, but a profound difference
makes its appearance in the movement. Given the shape, the travelling and rotating
speeds are not uniquely determined. Instead, there are two kinds, one of which has
a link with the solution of the LIE. The other is novel, because the speeds diverge in
the limit that the model equation tends to the LIE. The symmetry of the Lund–Regge
equation with respect to the interchange of the parameters underpins the existence of the
new mode.

When we make a mathematical model to mimic natural phenomena, a common tactic is
to invoke a perturbation-expansions technique. Usually, on account of difficulty, we cannot
help truncating the expansions at a finite order in powers of a small parameter. However, it
is probable that there are modes that cannot be captured without completing the expansions
to the infinite order. The analysis of section 4 reveals that our model provides us with an
example to illustrate the insufficiency of finite truncation. This inspires us to look into the
relevance of our model with some natural phenomena.

We can show that (2.2) or (2.4) serves as a model for the motion of a vortex filament
having irrotational jet in the core with the density larger than that of the surrounding fluid.
The vorticity is concentrated in the cylindrical sheet surrounding the core and otherwise the
flow is irrotational. The effect of the gravity force is ignored. The velocity of the centre
line of the core is obtained in powers of a small parameter, the ratio of the core to the
curvature radii. Under the assumption of local induction, it takes the same form as (2.2).
The second term comes from the internal jet and, when the density of the internal fluid is
larger, it balances with the leading term. The description of the detail is postponed to a
subsequent paper.
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Appendix. Degenerate case

When 1+ εc0 = 0, (4.6) becomes

�ez × X + (V + ε�)ez = AXξ (A.1)

whereA is a constant. It is determined by taking the inner product of (4.5) withXξ ,
resulting in

A = ±1

ε

√
1 + ε3�(2V + ε�). (A.2)

Substitution of the solution of (A.1) into (4.2) and (4.3) gives rise to a uniform helix:

X + iY = r0 exp

{
i

[
�s

A
+�

(
1 + 1

εA

)
t + φ0

]}
(A.3)

Z = V + ε�

A
s +

[
V

(
1 + 1

εA

)
+ �

A

]
t + z0 (A.4)

wherer0, φ0 andz0 are arbitrary constants.
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